点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:盈彩网app注册网|盈彩网app注册
首页>文化频道>要闻>正文

盈彩网app注册网|盈彩网app注册

来源:盈彩网app计划2022-04-09 17:48

  

法国华侨华人:中共二十大报告回答了海外华侨华人的关切******

  中新网10月17日电 据法国《欧洲时报》报道,中国共产党第二十次全国代表大会10月16日在北京开幕,旅法华侨华人纷纷观看开幕式直播。他们表示,二十大报告既实事求是,又高屋建瓴、振奋人心,华侨华人要发挥独特优势,和祖(籍)国人民一道,建功新时代、奋进新征程。

  法国华侨华人会主席蔡君柱表示,中共二十大是中国人民自信豪迈地站在了实现中华民族伟大复兴新的历史起点上召开的一次具有标志性的重要会议,也将对世界进程产生深刻影响,深刻影响华侨华人的生活。对于华侨华人来说,祖(籍)国的发展是我们的定心丸,是我们发展的定盘星。报告中说,加强和改进侨务工作,形成共同致力民族复兴的强大力量。我们将以更加昂扬的精神、更加坚定的信念,讲好中国故事,积极参与到中华民族复兴的伟大实践中去。

  法国青田同乡会会长叶旭群表示,中国创造了人类历史上规模最大、持续时间最长的经济繁荣奇迹,这一切都是在中国共产党领导下完成的,因此,中共二十大不但受到华侨华人关注,也深受外国朋友的关注。二十大报告中全面回答了世界对中国的各种关切,也回答了海外华侨华人的关切。报告充分肯定了华侨华人对中国发展的贡献,我们深以为中国的发展所献微薄之力而自豪。未来,我们也会继续坚定信心,建功新时代。

  法国北部华人协会会长潘翔表示,听完二十大报告后感想很多。作为海外青年一代侨领,我们要积极传承中华优秀传统文化,提升中华文化在海外的影响力,讲好中国故事、传播好中国声音,展现可信、可爱、可敬的中国形象,推动中华文化更好走向世界。

  全法中国科技工作者协会理事长董长治表示,在当前世界局势下,中共二十大的召开具有非凡的意义。二十大报告中强调,必须坚持科技是第一生产力、人才是第一资源、创新是第一动力,深入实施科教兴国战略、人才强国战略、创新驱动发展战略,开辟发展新领域新赛道,不断塑造发展新动能新优势。同时提出要扩大国际科技交流合作,加强国际化科研环境建设,形成具有全球竞争力的开放创新生态。这增强了海外科技工作者的信心和动力。

  全法中国学者学生联合会主席易子博表示,二十大报告中强调深入实施人才强国战略。坚持尊重劳动、尊重知识、尊重人才、尊重创造,实施更加积极、更加开放、更加有效的人才政策。着力形成人才国际竞争的比较优势。这给我们海外学子的未来提供了广阔的施展才能的天地。我们将不负嘱托,刻苦学习,早日成才,融入到全面建设社会主义现代化国家、全面推进中华民族伟大复兴洪流中去。

  法国山东同乡联合会会长王博生表示,在当前人类社会面临前所未有的挑战时刻,中共二十大的召开具有深刻的历史意义和现实意义。中国始终坚持维护世界和平、促进共同发展的外交政策宗旨,致力于推动构建人类命运共同体。我们希望全世界人民都能听懂中国人民的真诚呼吁:世界各国弘扬和平、发展、公平、正义、民主、自由的全人类共同价值,促进各国人民相知相亲,尊重世界文明多样性,以文明交流超越文明隔阂、文明互鉴超越文明冲突、文明共存超越文明优越,共同应对各种全球性挑战。中国人民愿同世界人民携手开创人类更加美好的未来。我们海外华侨华人也愿为之而努力。

  法国陕西联合会会长李洹通过网络直播全程收看了中共二十大开幕式,感到振奋鼓舞。他说,作为海外青年侨领,将一如既往在海外服务好侨胞,向当地社会讲好中国故事,积极促进家乡与所在国的各领域交流,努力把自身发展与祖(籍)国和家乡发展紧密结合,为中华民族的伟大复兴努力奋斗。(黄冠杰)

盈彩网app注册网

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 90后房产经纪人的快速升级之路!

  • 回顾:平行志愿这样填不浪费分

独家策划

推荐阅读
盈彩网app手机版包文婧直爽感情观获赞
2024-07-01
盈彩网app手机版APP日侵台死伤两倍于甲午战争
2024-06-04
盈彩网app投注北京发生山洪灾害 铲车翻倒4人被困
2023-12-31
盈彩网app计划群 托育品牌纽诺教育完成数千万B轮融资,3年计划营收5-6亿元
2024-11-04
盈彩网app美海军第三艘朱姆沃尔特舰举行正式命名仪式
2024-01-20
盈彩网app 因奔驰销量下滑 戴姆勒Q1运营利润下降16%
2024-05-02
盈彩网app代理小长假朋友圈晒表攻略
2024-05-05
盈彩网app攻略特斯拉蔚来"着火" 对新能源汽车消费影响几何
2024-01-04
盈彩网app登录强信心·开新局丨“用工旺”释放经济回升鲜明信号
2024-08-23
盈彩网app下载3分钟速览4月上市新车——新能源篇
2024-01-17
盈彩网app邀请码五旬环卫工藏书7000册:曾花五千元买下清朝木刻本
2024-03-16
盈彩网app走势图刘诗诗新剧真的很赶客
2024-04-07
盈彩网app软件 英超-福布斯韩国名人榜:孙兴慜位列第9 收入排第4
2024-04-18
盈彩网app平台国安要逼出个冠军!恒大曾惨死此招,泰国大连相继送命
2024-11-07
盈彩网app娱乐用脚步丈量工地 南沿江铁路江阴站安全总监小记
2024-01-24
盈彩网app交流群2019年的时候,有一部神剧,叫《权力的游戏》
2024-05-05
盈彩网app官方网站乌新总统:俄用护照诱乌公民是浪费时间
2024-06-12
盈彩网app返点 三大通信运营商布局试验网:5G全面商用还要多久?
2024-06-28
盈彩网app必赚方案马英九办论坛 郭台铭韩国瑜明日同台首度“交锋”
2024-08-26
盈彩网app网址粤媒:华南虎掐住对手“七寸”新疆仅有一名控卫
2024-09-03
盈彩网app赔率探秘国际成人展:娃娃与真人难分辨
2024-10-09
盈彩网app骗局号称规模超700亿的集团崩了!
2024-03-30
盈彩网app官方最高法出台公司法新司法解释加强股东权益保护
2024-03-20
盈彩网app开奖结果大家丨西南联大与梅贻琦日记
2024-09-12
加载更多
盈彩网app地图